Mathematics Textbooks

Read more about Basic Analysis: Introduction to Real Analysis

Basic Analysis: Introduction to Real Analysis

Copyright Year: 2016

Contributor: Lebl

Publisher: Jirí Lebl

License: CC BY-NC-SA

This free online textbook (e-book in webspeak) is a one semester course in basic analysis. This book started its life as my lecture notes for Math 444 at the University of Illinois at Urbana-Champaign (UIUC) in the fall semester of 2009, and was later enhanced to teach Math 521 at University of Wisconsin-Madison (UW-Madison). A prerequisite for the course is a basic proof course. It should be possible to use the book for both a basic course for students who do not necessarily wish to go to graduate school, but also as a first semester of a more advanced course that also covers topics such as metric spaces.

(3 reviews)

READ MORE

Read more about Precalculus: An Investigation of Functions

Precalculus: An Investigation of Functions

Copyright Year: 2017

Contributors: Lippman and Rasmussen

Publisher: David Lippman and Melonie Rasmussen

License: CC BY-SA

Precalculus: An Investigation of Functions is a free, open textbook covering a two-quarter pre-calculus sequence including trigonometry. The first portion of the book is an investigation of functions, exploring the graphical behavior of, interpretation of, and solutions to problems involving linear, polynomial, rational, exponential, and logarithmic functions. An emphasis is placed on modeling and interpretation, as well as the important characteristics needed in calculus.

(7 reviews)

READ MORE

Read more about Math in Society - Edition 2.5

Math in Society - Edition 2.5

Copyright Year: 2017

Contributor: Lippman

Publisher: David Lippman

License: CC BY-SA

Math in Society is a free, open textbook. This book is a survey of contemporary mathematical topics, most non-algebraic, appropriate for a college-level topics course for liberal arts majors. The text is designed so that most chapters are independent, allowing the instructor to choose a selection of topics to be covered. Emphasis is placed on the applicability of the mathematics. Core material for each topic is covered in the main text, with additional depth available through exploration exercises appropriate for in-class, group, or individual investigation. This book is appropriate for Math 107 (Washington State Community Colleges common course number).

(17 reviews)

READ MORE

Read more about Vector Calculus

Vector Calculus

Copyright Year: 2013

Contributor: Corral

Publisher: Michael Corral

License: Free Documentation License (GNU)

This is a text on elementary multivariable calculus, designed for students who have completed courses in single-variable calculus. The traditional topics are covered: basic vector algebra; lines, planes and surfaces; vector-valued functions; functions of 2 or 3 variables; partial derivatives; optimization; multiple integrals; line and surface integrals.

(1 review)

READ MORE

Read more about Calculus for the Life Sciences: A Modeling Approach Volume 1

Calculus for the Life Sciences: A Modeling Approach Volume 1

Copyright Year: 2011

Contributors: Cornette and Ackerman

Publisher: A.T. Still University

License: CC BY-NC-ND

Our writing is based on three premises. First, life sciences students are motivated by and respond well to actual data related to real life sciences problems. Second, the ultimate goal of calculus in the life sciences primarily involves modeling living systems with difference and differential equations. Understanding the concepts of derivative and integral are crucial, but the ability to compute a large array of derivatives and integrals is of secondary importance. Third, the depth of calculus for life sciences students should be comparable to that of the traditional physics and engineering calculus course; else life sciences students will be short changed and their faculty will advise them to take the 'best' (engineering) course.

(1 review)

READ MORE

Read more about OpenIntro Statistics - Fourth Edition

OpenIntro Statistics - Fourth Edition

Copyright Year: 2015

Contributors: Diez, Barr, and Cetinkaya-Rundel

Publisher: OpenIntro

License: CC BY-SA

OpenIntro Statistics covers a first course in statistics, providing a rigorous introduction to applied

(19 reviews)

READ MORE

Read more about Whitman Calculus

Whitman Calculus

Copyright Year: 2010

Contributor: Guichard

Publisher: David Guichard

License: CC BY-NC-SA

An introductory level single variable calculus book, covering standard topics in differential and integral calculus, and infinite series. Late transcendentals and multivariable versions are also available.

(6 reviews)

READ MORE

Read more about College Trigonometry

College Trigonometry

Copyright Year: 2011

Contributors: Stitz and Zeager

Publisher: Stitz Zeager Open Source Mathematics

License: CC BY-NC-SA

Covers chapters 10-11 of Precalculus.

(2 reviews)

READ MORE

Read more about Precalculus

Precalculus

Copyright Year: 2013

Contributors: Stitz and Zeager

Publisher: Stitz Zeager Open Source Mathematics

License: CC BY-NC-SA

A casual glance through the Table of Contents of most of the major publishers' College Algebra books reveals nearly isomorphic content in both order and depth. Our Table of Contents shows a different approach, one that might be labeled “Functions First.” To truly use The Rule of Four, that is, in order to discuss each new concept algebraically, graphically, numerically and verbally, it seems completely obvious to us that one would need to introduce functions first. (Take a moment and compare our ordering to the classic “equations first, then the Cartesian Plane and THEN functions” approach seen in most of the major players.) We then introduce a class of functions and discuss the equations, inequalities (with a heavy emphasis on sign diagrams) and applications which involve functions in that class.

(2 reviews)

READ MORE

Read more about Introduction to Probability

Introduction to Probability

Copyright Year: 1997

Contributors: Grinstead and Snell

Publisher: American Mathematical Society

License: Free Documentation License (GNU)

Probability theory began in seventeenth century France when the two great French mathematicians, Blaise Pascal and Pierre de Fermat, corresponded over two problems from games of chance. Problems like those Pascal and Fermat solved continuedto influence such early researchers as Huygens, Bernoulli, and DeMoivre in establishing a mathematical theory of probability. Today, probability theory is a wellestablished branch of mathematics that finds applications in every area of scholarlyactivity from music to physics, and in daily experience from weather prediction topredicting the risks of new medical treatments.

(6 reviews)

READ MORE